Fatigue Analysis of FRP Strengthened Masonry by Acoustic Emission Monitoring

Author:

Grazzini Alessandro1ORCID,Lacidogna Giuseppe1

Affiliation:

1. Politecnico di Torino

Abstract

The safety work of historical and monumental building heritage requires the use of innovative materials compatible with the high architectural value. The Fiber Reinforced Polymers (FRP) represent a valid alternative to traditional ones, and the carbon fiber sheets are very light and easy to glue to the masonry structures. However, the durability of the application of FRP sheets is still uncertain in the long time behavior, especially with regard to cyclic fatigue loads such as seismic ones. In this work an experimental analysis on a set of strengthened masonry walls under fatigue tests (loading and freezing-thawing test) has been carried out in order to evaluate creep effects. During cyclic tests in the laboratory it was possible to monitor the damage pattern through the acoustic emission (AE) technique. The AE monitoring is useful to estimate the amount of energy released from fracture propagation in the adherence surface between masonry and FRP sheet. The different phases of damage evolution are recognized through the analysis of AE data over time. In particular, the time dependence of AE counting number is useful to indicate the beginning of the unstable damage growth and predicts the possible failure of the specimens at the 80% of the test duration. Furthermore, a sudden decay in the AE frequency is detected during the last phase of the fatigue tests. These results illustrate the applicability and the advantages of AE technique for the monitoring of long-term damage growth in strengthened masonry.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3