Fracture Propagation Pathways Pattern on UV-Irradiated Double-Edge Cracked of Mordenite Zeolite-HDPE Composites

Author:

Purnomo 1,Setyarini Putu Hadi2

Affiliation:

1. Universitas Muhammadiyah Semarang

2. Brawijaya University

Abstract

Mechanical failure of zeolite-high density polyethylene (HDPE) material applied to skull bone implants is a material fracture that cannot be controlled. An important step to minimize failure due to fracture is to understand the fracture characteristics indicated by the propagation path pattern. This study aimed to investigate the fracture propagation pathways of zeolite-HDPE composites in quasi-static conditions. UV-irradiated Double-edge cracked zeolite-HDPE composite was tested in mode I (a stress perpendicular to the plane of the crack) in a universal testing machine (UTM) with a crosshead speed of 2 mm/min at a constant room temperature of approximately 25°C. The stress and elongation were registered by the UTM. During loading, the evolution of cracks in the ligament length region was recorded with the camera so that the crack propagation pathway until the total fracture occurs can be clearly observed. The results show that the crack propagation pathway patterns were not all straight and parallel to the ligament length. They are also found in a deviant state of the ligament length line by forming an angle α. created between the ligament length line and the fracture propagation deviation direction. This deviation occurs after the crack propagates straight away from the initial-cracks.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3