Numerical Study of the Fermi Surface Evolution in Cuprates Using the One-Band Hubbard Model
-
Published:2020-04
Issue:
Volume:840
Page:507-513
-
ISSN:1662-9795
-
Container-title:Key Engineering Materials
-
language:
-
Short-container-title:KEM
Author:
Aminullah Lanang Maulana1, Santoso Iman1
Affiliation:
1. Universitas Gadjah Mada
Abstract
A Numerical calculation of the Fermi Surface (FS) evolution in cuprate using the one-band Hubbard model by the matrix diagonalization method has been done. This work focusses on the study of the evolution of the FS in the cuprate material, namely , numerically by introducing a specific order parameter in the Hubbard model matrix. In this study, we confirm two evolution types of the FS of as an experimental result. Firstly, the evolution of the antibonding FS topology from the electron-like to the hole-like is generated by the order parameter that has a form of where is the order parameter coefficient that corresponds to the hopping parameter of the atomic neighbor long-range interaction and is the normalized momenta coordinate of the first Brillouin zone. On the contrary, the order parameter that has a form of generates the evolution of the FS from the hole-like topology to the electron-like topology. Secondly, the anisotropic evolution of the FS can be described by an extended d-wave order parameter which generating either the V-shape or U-shape type of the energy gap.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference18 articles.
1. H. Ding, J.C. Campuzano, M.R. Norman, M. Randeria, T. Yokoya, T. Takahashi, T. Takeuchi, T. Mochiku, K. Kadowaki, P. Guptasarma, D.G. Hinks, ARPES study of the superconducting gap and pseudogap in Bi2Sr2CaCu2O8+δ, J. Phys. Chem. Solid 59 (1998) 1888-1891. 2. J. Mesot, M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, A. Paramekanti, H.M. Fretwell, A. Kaminski, T. Takeuchi, T. Yokoya, T. Sato, T. Takahashi, T. Mochiku, K. Kadowaki, Superconducting gap anisotropy and quasiparticle interactions: a doping dependent photoemission study, Phys. Rev. Lett. 83 (1999) 840-843. 3. S.V. Borisenko, , A.A. Kordyuk, , T.K. Kim, , S. Legner, , K.A. Nenkov, , M. Knupfer., M.S. Golden, , I. Fink, , H. Berger, R. Follath, Superconducting gap in the presence of bilayer splitting in underdoped (Pb, Bi)2Sr2CaCuO8+δ, Phys. Rev. B 66 (2002) 1-4. 4. M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, T. Yokoya, T. Takeuchi, T. Mochiku, K. Kadowaki, P. Guptasarma, D.G. Hinks, Destruction of fermi surface in underdoped high-Tc superconductors, Nature 391 (1998) 157-160. 5. W.S. Lee, I.M. Vishik, K. Tanaka, D.H. Lu, T. Sasagawa, N. Nagaosa, T.P. Devereaux, Z. Hussain, Z.X. Shen, Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212, Nature 450 (2007) 81-84.
|
|