Affiliation:
1. King Mongkut’s University of Technology North Bangkok
Abstract
In this work, four fracture criteria—namely, Fracture Forming Limit Curve (FFLC), Fracture Forming Limit Stress Curve (FFLSC), Fracture Locus (FL) and Fracture Locus Embedded with Bao-Wierzbicki Ductile Damage Criterion (BW-FL)—are comparatively deployed to forecast breakage of deformed AA2024-T3 sheet aluminium-alloy. An FFLC can be experimentally formed by conducting a set of Nakajima stretch-forming based tests. To obtain an FFLSC, such an FFLC drawn in the strain space has to be entirely mapped onto the stress space. This can computationally be accomplished with the help of those well-known plasticity-relevant models like the Hill’48 anisotropic yield criterion and the Swift hardening law. Likewise, both BW-FL and FL in terms of stress triaxialities and critical plastic strains can mathematically be derived from the FFLC incorporated with the Hill’48 anisotropic yield criterion. Hole expansion and tree-point bending tests are carefully carried out both experimentally and simulatively to verify those four generated fracture limits. The more innovative FFLSC and FL demonstrate more accurate prediction on rupture of AA2024-T3 sheet aluminium-alloy than the conventional FFLC. The BW-FL however performs the worst.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献