Effect of Lanthanum Substituted CoFe2-xLaxO4 on Change of Structure Parameter and Phase Formation

Author:

Johan Akmal1,Wisnu Ari Adi2,Arsyad Fitri Suryani1,Setiabudidaya Dedi1

Affiliation:

1. Sriwijaya University

2. National Nuclear Energy Agency

Abstract

In this research, CoFe2-xLaxO4-based smart magnetic material has been developed which will be applied as a microwave absorbing material. This smart magnetic material is an artificial advanced material which has properties such as electromagnetic waves so that it is able to respond to the presence of microwaves through the mechanism of spin electron resonance and wall resonance domain. This smart magnetic material consists of a combination of rare earth metal elements (spin magnetic in the f orbital configuration) and transition metal elements (spin magnetic in the d orbital configuration) with a semi-hard magnetic structure. This semi-hard is a characteristic of magnetic properties which is between hard magnetic and soft magnetic properties. This characteristic of the semi-hard magnetic properties is needed so that this material has the ability to absorb microwaves. Substitution of lanthanum into cobalt ferrite CoFe2-xLaxO4 for La3+ (x = 0 - 0.8) has been synthesized using the solid reaction method through mechanical deformation techniques. The refinement result of X-ray diffraction shows that the sample contains 2 phases with increasing of x compositions. Particle morphology and elementary analysis were observed respectively by using a scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). It was concluded that the effect of La substitution on CoFe2-xLaxO4 resulted in changes in the crystal structure parameters and phase transformation as a function of composition.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3