Fish Scale Collagen Functionalized Thermo-Responsive Nanofibres

Author:

Tshai Kim Yeow1ORCID,Chin Mei Hua1,Lim Siew Shee1ORCID,Loh Hwei San1,Yong Ernest Hsin Nam1,Nuge Tamrin2

Affiliation:

1. University of Nottingham Malaysia

2. University of Malaya

Abstract

Smart thermosensitive polymer such as poly (N-isopropyl acrylamide) (PNIPAM) and dominant fibrous protein of connective tissue such as collagen (CLG) possess great potential in biomedical and tissue engineering applications. The objectives of current work aim to explore potential of PNIPAM and collagen by (i) establish a stable procedure to extract collagen from fresh water Tilapia fish scale (TFS) and (ii) fabricate PNIPAM and hybrid PNIPAM-CLG nanofibrous scaffolds through electrospinning technique and investigate their material-process-structure behaviour. Type I collagen was derived through acid hydrolysis of TFS. Electrospinning of PNIPAM was carried out with 16, 18 and 20 wt% PNIPAM concentration in methanol (MeOH) while PNIPAM-CLG was prepared through blending measured quantity of PNIPAM dissolved in water with collagen dissolved in acetic acid. Material properties, viscosity, morphology and thermo-physical behaviors of the derived collagen, electrospun PNIPAM and PNIPAM-CLG scaffolds were characterized. Results from SDS-PAGE and FTIR confirmed that the isolated TFS collagen is of type I. EDX revealed that demineralization eliminated the aluminium, magnesium, silicon and phosphorus while significantly reduced the sulfur elements from raw TFS. SEM observation of the collagen morphology shown a fluffy and fibrillary lamellae structure. Electrospun scaffolds were successfully fabricated with 16 and 18 wt% PNIPAM in MeOH. Both homogeneity and average fibre diameter (Davg) were greater in the 18 wt% PNIPAM scaffold, in which the Davg for 16 and 18 wt% were ~110 and ~131.7 nm respectively. However, PNIPAM at 20 wt% failed to be electrospun owing to its excessively high viscosity. On the other hand, SEM observation revealed that the electrospun hybrid PNIPAM-CLG scaffold has Davg of ~105.5 nm amid the presence of numerous elongated beads.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3