Desorption of Mercury Complex from Fe-Modified Montmorillonite Adsorbent Membrane

Author:

Lodo Marjorie Jane1,Diaz Leslie Joy L.2

Affiliation:

1. Environmental Engineering Program

2. University of the Philippines

Abstract

With the use of nanotechnology, clay minerals, specifically montmorillonites, have been reengineered to be used in environmental remediation, especially in the treatment of mining wastewater containing hazardous heavy metal ions. The objective of this study is to assess the practicality of using iron-modified montmorillonite (Fe-MMT) nanomembranes in the removal of mercury using the adsorption process. The nanomembranes, which were synthesized via electrospinning, were subjected to mercury cyanide solutions during the batch adsorption set ups to determine the adsorption efficiency. During the subsequent elution tests, three factors– eluent type (CH3COOH and C6H807), eluent concentration (0.01 M and 0.05 M) and contact time (3 and 5 hours) – were tested. SEM images of the mats were acquired to study the structure of the adsorbent. HD XRF analysis was done to identify the ions present in the membrane, as well as the initial Hg concentrations, amount of remaining Hg in the wastewater after batch adsorption and amount of desorbed metal. Results showed that using the Fe-MMT nanomembrane as adsorbent material resulted to 61.74% removal of Hg in the mercury cyanide solutions with initial concentrations of 13.87 to 38.9 mg L-1. Acetic acid exhibited better desorption results, with the highest efficiency of 31.36% (0.01 M, 5 h) compared to citric acid’s 7.40% (0.05M, 3 h).

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on adsorption properties of water hyacinth-derived biochar for uranium (VI);Journal of Radioanalytical and Nuclear Chemistry;2020-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3