Mechanical Properties of Aged-TiNiPdCu High Temperature Shape Memory Alloys

Author:

Rehman Saif Ur1,Khan Mushtaq2,Khan Aamir Nusair3,Ali Liaqat2,Jaffery Syed Imran Husain2,Khurram Mohammad4

Affiliation:

1. Institute of Industrial Control System

2. National University of Science and Technology (NUST)

3. Institute of Industrial and Control System, Rawalpindi, Pakistan

4. College of Electrical and Mechanical Engineering, National University of Science and Technology

Abstract

High temperature ternary Ti50Ni25Pd25 and quaternary Ti50Ni20Pd25Cu5 shape memory alloys were developed in vacuum arc melting furnace using high purity constituent elements. Half numbers of samples were solution treated at 900 °C for 2 hrs and remaining were aged at 600 °C for 3 hrs. Both alloys were characterized for microstructure analysis and mechanical properties. After aging the alloys, no significant change in microstructure was observed in ternary alloy however, fine precipitates of bright color were found along the grain boundaries in quaternary alloy. The mechanical properties of ternary and quaternary alloys were found to be improved significantly. Microhardness of ternary alloy was increased by 18 Hv whereas for quaternary alloy the same property was improved by 24 Hv. Yield stress of ternary and quaternary was observed to be enhanced by 10 MPa and 9 MPa respectively. Similarly the fracture stress was observed to be increased by 9 MPa and 13.4 MPa. Conversely, the fracture strain of ternary and quaternary alloys was reduced by 0.5% and 0.35% respectively. From these results it can be established that aging at 600 °C is beneficial to improve the mechanical properties of both alloys however, quaternary alloy responded more actively as compared to ternary alloy.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3