Crack Tip Stress Field Analysis of Crack Surface Contact and Opening during In Situ Wedge Loading of Human Enamel

Author:

Salvati Enrico1,Besnard Cyril1,Harper Robert A.2,Moxham Thomas1,Shelton Richard M.2,Landini Gabriel2,Korsunsky Alexander M.1ORCID

Affiliation:

1. University of Oxford

2. University of Birmingham

Abstract

Shallow cracks are often observed in dental enamel, however do not normally lead to deep fractures. Previous work has highlighted the toughening mechanisms that operate in enamel during crack propagation, but very little is known about the deformation and stress fields arising around the propagating cracks during realistic loading conditions. This work aims to elucidate how the stresses are distributed within human dental enamel when a pre-existing crack is subjected to opening and surface contact with in situ indentation. We present a synchrotron-based insitu analysis coupled with a linear elastic finite element method simulation. The experimental reconstructed stress fields identified a prominent residual stress within the enamel, accompanied by a visible pattern that appeared clearly associated with its underlying microstructure. The numerical modelling of the stress field and discerning of surface contact and crack opening caused by the indentation was subsequently possible, even if in this study the influence of the anisotropy induced by the presence of features at a smaller scale was neglected. The implications of these findings and directions for future research are discussed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3