Effect of Surface Treatment and Cutting Orientation to the Changes in Stents Surface Roughness

Author:

Syaifudin Achmad1ORCID,Ariatedja Julendra Bambang1,Sasaki Katsuhiko2

Affiliation:

1. Institut Teknologi Sepuluh Nopember

2. Hokkaido University

Abstract

During the implantation process, an expandable balloon stent undergoes a change in mesh shape with a high strain rate. Permanent mesh shape changes to the stents indicate plastic deformation has occurred. On a micro-scale, plastic deformation has significant influence when interacting with the soft tissue of human blood vessels. This experimental study aims to investigate the effect of surface treatment and cutting orientation on the changes in surface roughness that definitely occurs when a stent deployed. To study the effect of surface treatment, two types of surface treatment were applied after surface polishing, i.e. etching and electropolishing. Surface polishing is carried out to enable microscopic observation. As for examining the effect of cutting orientation, the plate is cut in lateral and longitudinal orientation against the predicted-rolling direction of 316L sheet-type of stainless steel. An intermittent tensile test is conducted to obtain information about the changes in surface roughness. The surface observation is carried out three times on a similar surface of testpiece after reaching plastic deformation. The experimental study shows that the orientation of raw material has an insignificant effect on the changes in stent surface roughness. As for the surface treatments, electropolishing tended to decrease the tensile property of material.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3