Modification of the Thermoset Injection Moulding Process for Shaping to Increase the Fibre Length in C/C-SiC Ceramics Produced by the LSI Process

Author:

Stiller Jonas1,Nestler Daisy1,Päßler Erik2,Kempe Fabian1,Wätzig Hendrik1,Ahmad Husam1,Kroll Lothar1,Sommer Michaela3,Wagner Guntram1

Affiliation:

1. Chemnitz University of Technology

2. University of Technology Chemnitz

3. Gemeinnuetzige KIMW Forschungs-GmbH

Abstract

Ceramic-matrix composites (CMC) made of carbon and silicon carbide dual matrix reinforced with carbon fibres (C/C-SiC) have exceptional heat, thermal shock, creep, and wear resistance, while also having little density and high strength. In comparison to monolithic ceramics, CMC possess ductility and damage tolerance, which opens this material for severe applications. Starting in space applications, this material is today well established in friction applications, where lightweight high-performance brakes securely decelerate e.g. luxury cars or elevators. The high production costs still limit the broad application like as brake discs in standard passenger cars, although less weight, better performance and longer lifetime. The industrial used production process is the liquid silicon infiltration (LSI) with it three steps: green body shaping, pyrolysis and silicon infiltration. In this work, the shaping process of the carbon fibre reinforced plastic (CFRP) green body, is done by thermoset injection moulding. The application of plastic production processes like compounding and injection moulding in the liquid silicon infiltration process route, enables large-scale manufacturing. However, the screws and high shear forces inside the plastic processing machines significantly shorten the fibres. This paper describes the pros and cons of thermoset injection moulding in the LSI route, as well as the development and effect of different reinforcement types in dependence of their fibre length, since several energy dissipation mechanisms bases on a minimum length of reinforcement fibres in CMC. Various raw materials like short and chopped fibres with different length, rovings, and different approaches to receive longer fibres and their outcomes are presented. The mechanical properties show promising values and the micrographs display the infiltration status and crack development inside the specimen.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3