Affiliation:
1. National Chi Nan University
Abstract
An elastic-plastic contact stress analysis is presented to study cyclic plastic deformation of surface hardened rolling elements under repeated contacts. The rolling contact is simulated by a Hertz contact loading moving across an elastic-plastic half-space. An exponential model with hardness varying with depth is employed for the surface hardened components, and the Chaboche nonlinear hardening rule is used to model cyclic plastic behavior of contact elements. Numerical results show that the hardened layer can effectively reduce the plastic deformation near contact surface. The contact elements with sufficient surface hardness may reach elastic shakedown state under repeatedly rolling contact. As the hardened layer reaches a certain depth, e.g. two times of half contact length, however, the effects of case depth on plastic strain and residual stress become negligible after hundred contact cycles.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science