Influence of Mn and TiB2 on the Microstructural Evolution of the Primary α-Al Grains and Fe Containing Intermetallic in the Wrought Al-Mg-Si Alloy

Author:

Khan Mir Hamza1,Li Zushu1,Kotadia Hiren1,Das Amit2

Affiliation:

1. University of Warwick, Warwick Manufacturing Group

2. Swansea University, College of Engineering

Abstract

The most popular aluminium alloy used for the automotive applications is the wrought-Al alloy, where its popularity arises from its intrinsic characteristics such as, excellent formability, crash resistance, corrosion resistance and excellent specific strength. In the coming decades the use of aluminium alloys is expected to increase within automotive and aerospace industries, where this will source for an upsurge in Al recycling. Problems arise during Al recycling, where there is a steady build-up of Fe content, as this is recognised as being an impurity element. Fe has very little solubility in Al in its solid state and precipitation of these Fe intermetallics (IMC), in the Al matrix decrease mechanical properties, due to the Fe IMC brittle nature. These Fe-rich IMC also have very little cohesion to the Al matrix and can separate from the Al matrix resulting in the development of voids, where the initiation of microcracks becomes ostensible when subjected to thermomechanical processing. In order to curtail the damaging effect of the Fe IMC it so of importance to alter the nucleation and growth characteristic of the Fe rich IMC during solidification. Addition of trace elements and the manipulation of cooling rates have shown to be an effective technique to alter the Fe IMC morphology. In order observe the morphological evolution of the Fe IMC, various experiments were conducted using Al-1Si-1Mg-1Fe alloy with the addition of Mn and TiB2-based commercial grain refiner. Microstructural analysis of the primary α-Al and Fe IMC are observed and the morphological evolution of the Fe IMC is analysed with respects to the addition of Mn and TiB2. How the addition of these trace elements influence the growth characteristics and chemistry of the Al melt is also presented in this work.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3