Predictive Study of Combustion Temperature of Liquefied Petroleum Gas (LPG) on the Spherical Packed-Bed Porous Burner

Author:

Peamsuwan Rapeepong1,Klamnoi Anucha1,Yotha Narongsak1,Krittacom Bundit1

Affiliation:

1. Rajamangala University of Technology Isan

Abstract

The relation between the significant factors and the combustion temperature (T) of Liquid Petroleum Gas (LPG) on the spherical packed-bed porous burner is investigated. Alumina-Cordierite ceramic balls having the average diameter (d) of 3 mm. and the porosity (ε) of 0.322 are employed as porous media. The multiple-linear and multiple-quadratic regressions are used to analyze the data at the equivalence ratio (F) of 0.58 – 0.66 and volumetric premixed-gas flow rate (Vmix) in a range of 10 – 25 m3/h. The porous thickness (H) is in the range of 2.5 – 7.5 cm. Thus, independent variables are F, Vmix and H. The dependent variable is the maximum temperature (T) of combustion LPG on the porous burner. For statistical analysis, both main and interaction of independent variables effecting to the combustion temperature are investigated. The results showed that, for the case of multiple-linear regression, an equations recommended in prediction of the T on porous burner is T = 1375.603(F) +179.636(H) – 295.028(FH) – 9.628(HVmix) + 16.368(FVmixH) with a coefficient of determination (R2) of 0.998 and the standard error of the estimation of 42.7365. In the case of multiple- quadratic regression, a proper equation used in predicting T on porous burner is T = 2133.184(F)2 + 1.247(Vmix)2 + 17.248(H)2 – 2.916(FVmix )2 – 42.107(FH)2 – 0.049(VmixH)2 + 0.123(FVmixH)2 with R2 of 0.997 and standard error of the estimation of 44.2979. In addition, the comparison between the experimental results and the predicted estimation is reported that different percentage of both regressions and experimental results is satisfied.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3