Anodization of Highly Ordered Titania Nanotube Prepared with Organic Electrolyte

Author:

Suharno Bambang1,Ramadhanti Nabila1,Aryani Nadya1,Zakiyuddin Ahmad1,Supriadi Sugeng1

Affiliation:

1. Universitas Indonesia

Abstract

Ti-6Al-4V as an implant material has bio-inert properties, so it does not support any tissues or bone cells reaction. This study aims to increase the tendency of osteoblast's cell attachment to the surface of implant Ti-6Al-4V by fabricating nanotube structure on the surface by anodization. This study also conducted to study the effect of elements from titanium alloys and organic electrolytes on the mechanism of formation of nanotube structures. The anodization method was chosen because it was easy to do, effective, and inexpensive. The samples were prepared by ground and polished, then washed by ultrasonic. Anodization used organic electrolytes in the form of a mixture of ethylene glycol, 0.5 M NH4F, and 4 w.t% deionized water. The study of the effect of voltage and duration time was carried out to understand the mechanism of nanotube formation, through morphological observation on the surface and cross-section area of nanotubes using SEM and characterization of elements using EDS, diameter, and length of highly ordered nanotubes was observed. The results of the characterization showed that the tube diameter is adjusted by the voltage, while duration time influence the tube length, with a linear relationship, so the widest diameter achieved at 40V 5h, but the longest tube achieved at 30 V 5h. Whereas for 5h duration, the upper part of the tube collapsed and disintegrated. The fluoride ions incorporated at the tube surfaces formed fluoride-titanium oxide cubic agglomerates, and the whole nanotube surface was oxide.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3