Microstructure and Wear Behavior of Squeezed Magnesium Alloy (AM100) Based Composites Reinforced with ZrB2, Graphite and Hybrid of ZrB2 and Graphite Particles

Author:

El-Khair Malak Abou1,Firouz Fatma1,Lotfy Ahmed1,Mohamed Essam1,Daoud Atef1

Affiliation:

1. Central Metallurgical Research and Development Institute (CMRDI)

Abstract

An attempt has been made to investigate the microstructures and wear behavior of magnesium alloy AM100 (Mg-Al-Mn) based composites reinforced with 7 vol. % of ZrB2, graphite or hybrid of (1:1) ZrB2 and graphite particles as well as the unreinforced magnesium alloy. Magnesium alloy was melt under shield of inert gases and composites were prepared using stir casting method. Optical microscopy was used to study the microstructures of the unreinforced alloy and composites. The composites characterized primarily by the uniform distribution of particles in the matrix and a good adherence between the particles and matrix. XRD analysis was used to identify the phases of the unreinforced alloy and composites. The XRD diffraction pattern of AM100 matrix reveals different phases, namely, Mg, AlMn and Al12Mg17. Formation of these phases is due to the reaction between alloy constituents. Dry sliding wear tests were conducted by using a pin-on-ring apparatus. The wear rates of the composites and matrix alloy were measured at loads of 10, 20 and 30 N, and sliding speed of 0.7 m/s. The worn surfaces of the composite pins were examined by scanning electron microscopy (SEM). The experimental results of the wear tests showed that the magnesium based composites exhibited higher wear rate at all the applied loads when compared to those of the unreinforced magnesium alloy. The ZrB2 reinforced magnesium composite exhibited the lowest wear rate amongst the composites material investigated in the present work.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference18 articles.

1. S. Jayalakshmi, S.V. Kailas and S. Seshan: Composites Part A 33, 2002, 1135–1140.

2. P.K. Biswas, S.C. Dev and C.S.S. Krishnan: Ind Foundry J, 45(3), 1999, 17–26.

3. G. Chadha, J.E. Allison and J.W. Jones: Metallurgical and Materials Transactions A-vol. 38A, 2007, 286-297.

4. D.J. Sakkinen: SAE Technical Paper No. 940779, SAE, Detroit, MI, (1994).

5. M. Murray, and R. Esdaile: SAE Technical Paper No. 1999–01-0928, SAE, Detroit, MI, (1999).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3