Affiliation:
1. The Czech Academy of Sciences
2. University Center for Energy Efficient Buildings, Czech Technical University in Prague
Abstract
Skeletal disorders, caused by trauma, disease, or carcinoma, may result in tissue loss and, finally, in endoprosthesis. Tissue engineering offers an alternative - tissue scaffolds. Its constructs may be seeded with autologous cells or, alternatively, attract cells from the surrounding tissues. Such a scaffold must meet several requirements, such as biocompatibility, biodegradability and suitable morphology for cell attachment and proliferation. Nonetheless, scaffold should stimulate cells migrated from the surrounding tissues to infiltrate the scaffold, proliferate and differentiate to the required cell type. In the current study, we developed a fibrous scaffold with 3D structure using emulsion centrifugal spinning. The scaffold from poly-ɛ-caprolactone contained a cocktail of growth factors, i.e. TGF-β, IGF and bFGF. The released growth factors enhanced cell proliferation and chondrogenic differentiation. The scaffold is a promising material for skeletal tissue engineering.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献