Recombinant Expression and Biochemical Characterization of Levansucrase from Halophilic Bacteria Bacillus licheniformis BK1 and BK2

Author:

Permatasari Nur Umriani1,Ratnaningsih Enny2,Hertadi Rukman2

Affiliation:

1. Hasanuddin University

2. Institut Teknologi Bandung

Abstract

Levansucrase was an extracellular polysacharride (EPS) which has a role in synthesizing levans by transferring fructose moiety from sucrose to acceptor molecules. In the previous study, we have successfully cloned the levansucarese gene from two Bacillus licheniformis strains of BK1 and BK2 labeled as lsbl-bk1 and lsbl-bk2. The present study aims to optimize the expression level of both genes in E. coli expression system and also to obtain the optimum conditions for the recombinant enzymes activity by applying the response surface methodology (RSM). The optimization result found that the highest Lsbl-bk1 production in E. coli expression system was occurred when the recombinant cells grown in the medium containing 0.6% (w/v) NaCl at 42°C, and induced by 0.6 mM IPTG. Different optimum conditions were found for Lsbl-bk2 production. It was achieved when 1.1% (w/v) NaCl added to the production medium and induced by 0.7 mM IPTG at 40°C. RSM optimization result for biochemical characterization of Lsbl-bk1 levansucrase showed the highest specific activity achieved at 56°C and pH 7.5, whereas for the Lsbl-bk2 levansucrase reached the highest specific activity at 50°C and pH 7.5. The addition of Co2+, Ti2+, Mg2+, Ba2+, Zn2+, Fe3+, Ca2+ metal ion to both levansucrases solution did not significantly altered their specific activity, indicating that both levansucrases are not metalo enzymes. Furthermore, the specific activity of levansucrase was also not affected by the addition of 1-25% (w/v) NaCl, suggesting that the variation of ionic strength did not alter the native state of both enzymes. The plot results of levansucrase specific activities toward sucrose concentration showed that both levansucrases follow Michaelis-Menten profile with kcat/KM values ​​about 3.8 and 3.6 s-1/mM respectively. These data indicated that the recombinant levansucrases from halophilic bacteria B. licheniformis BK1 and BK2 are a non metaloenzyme with high affinity and binding rate to sucrose substrate, in which the catalytic efficiency on hydrolysis reactions is relatively low.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3