Affiliation:
1. Federal Institute of Education
2. Federal University of Campina Grande (UFCG)
3. Federal University of Campina Grande
Abstract
Food drying is one of the most used methods of preservation. To accurately describe moisture migration within biological products (grains, fruits, vegetables, etc.) during drying and explain the effects of this process on the quality of the material, have been proposed several mathematical models, but few incorporate the phenomena of simultaneous heat and mass transport applied to complex geometry. In this sense, this paper aims to present a mathematical model, based on the thermodynamics of irreversible processes to describe the heat and mass transfer (liquid and vapor) during the drying of bodies with oblate spheroidal geometry. This model was applied to describe drying of lentil, considering the variables transport coefficients and equilibrium conditions at the surface of the solid. Results of the average moisture content, average temperature, liquid flux, vapor flux, and moisture content and temperature distributions inside a lentil kernel during drying process, at different temperatures (40 and 60 oC) were presented and analyzed.
Publisher
Trans Tech Publications, Ltd.
Subject
General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献