Lotus-Effect®: Biomimetic Super-Hydrophobic Surfaces and their Application

Author:

Spaeth Manuel1,Barthlott Wilhelm1

Affiliation:

1. Nees Institute for Biodiversity of Plants

Abstract

The majority of organismic surfaces, like the plant cuticle, is not smooth but micro-structured. Moreover, they are often covered with hydrophobic wax crystals, some hundred nm in size. The combination of micro- and nanostructures, together with a hydrophobic chemistry, generates the phenomenon of super-hydrophobicity: Water-droplets on such surfaces exhibit contact angles above 140°. Furthermore, dirt particles can barely adhere and are removed by running water only, hence they are called ‘self-cleaning’. The underlying physico-chemical principles were successfully applied to technical prototypes. This technical conversion was patented and the trade mark Lotus-Effect® was introduced in the mid 1990s. Since then several Lotus-Effect® products like a façade paint, a glass coating or a spray were introduced. Another area of application for which prototypes exist, are textiles for awnings, tents or other outdoor purposes. Recently a different aspect of such surfaces is investigated: structures retaining air under water. Several floating plants and semiaquatic animals show this ability. The aim of this project is to develop technical surfaces for long time application in ships and pipelines, as an air film between surface and liquid leads to drag reduction and thus savings of energy.

Publisher

Trans Tech Publications Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3