Classification of Mammograms Using Texture and CNN Based Extracted Features

Author:

Debelee Taye Girma1,Gebreselasie Abrham1,Schwenker Friedhelm2,Amirian Mohammadreza3,Yohannes Dereje1

Affiliation:

1. Addis Ababa Science and Technology University

2. Ulm University

3. Zurich University of Applied Sciences

Abstract

In this paper, a modified adaptive K-means (MAKM) method is proposed to extract the region of interest (ROI) from the local and public datasets. The local image datasets are collected from Bethezata General Hospital (BGH) and the public datasets are from Mammographic Image Analysis Society (MIAS). The same image number is used for both datasets, 112 are abnormal and 208 are normal. Two texture features (GLCM and Gabor) from ROIs and one CNN based extracted features are considered in the experiment. CNN features are extracted using Inception-V3 pre-trained model after simple preprocessing and cropping. The quality of the features are evaluated individually and by fusing features to one another and five classifiers (SVM, KNN, MLP, RF, and NB) are used to measure the descriptive power of the features using cross-validation. The proposed approach was first evaluated on the local dataset and then applied to the public dataset. The results of the classifiers are measured using accuracy, sensitivity, specificity, kappa, computation time and AUC. The experimental analysis made using GLCM features from the two datasets indicates that GLCM features from BGH dataset outperformed that of MIAS dataset in all five classifiers. However, Gabor features from the two datasets scored the best result with two classifiers (SVM and MLP). For BGH and MIAS, SVM scored an accuracy of 99%, 97.46%, the sensitivity of 99.48%, 96.26% and specificity of 98.16%, 100% respectively. And MLP achieved an accuracy of 97%, 87.64%, the sensitivity of 97.40%, 96.65% and specificity of 96.26%, 75.73% respectively. Relatively maximum performance is achieved for feature fusion between Gabor and CNN based extracted features using MLP classifier. However, KNN, MLP, RF, and NB classifiers achieved almost 100% performance for GLCM texture features and SVM scored an accuracy of 96.88%, the sensitivity of 97.14% and specificity of 96.36%. As compared to other classifiers, NB has scored the least computation time in all experiments.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Reference5 articles.

1. World Health Rankings, http://www.worldlifeexpectancy.com/, Accessed on April, (2017).

2. A.Oliver Malagelada, Automatic Mass Segmentation in Mammographic Images. Ph.D. dissertation, Universitat De Girona, Catalonia, Spain (2007a).

3. Mammographic Image Analysis Homepage: Signs of Diseases http://www.mammoimage.org/signs-of-disease/ Accessed on Nov.02.(2015).

4. Mehul P. Sampat, Mia K. Markey, Alan C. Bovik, Handbook of Image and Video Processing: Computer-Aided Detection and Diagnosis in Mammography. Elsevier Academic Press, Burlington (2005).

5. J Suckling et al., The Mammographic Image Analysis Society Digital Mammogram Database Exerpta Medica, International Congress Series 1069(1994)375-378.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3