Classifier Based Breast Cancer Segmentation

Author:

Kebede Samuel Rahimeto1,Debelee Taye Girma1,Schwenker Friedhelm2,Yohannes Dereje1

Affiliation:

1. Addis Ababa Science and Technology University

2. Ulm University

Abstract

Breast cancer occurs as a result of erratic growth and proliferation cells that originate in the breast. In this paper, the classifiers were used to identify the abnormalities on mammograms to get the region of interest (ROI). Before classifier based segmentation, noise, pectoral muscles, and tags were removed for a successful segmentation process. Then the proposed approach extracted the brightest regions using modified k-means. From the extracted brightest regions, shape and texture features were extracted and given to classifiers (KNN and SVM) and marked as ROI only those non-overlapping abnormal regions. The ROIs obtained using the proposed classifier-based segmentation algorithm was compared with the ground truth annotated by the radiologists. The datasets used to evaluate the performance of the proposed algorithm was public (MIAS) and local datasets (BGH and DADC).

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3