RADON Operational Experience in High-Temperature Treatment of Radioactive Wastes

Author:

Stefanovsky Sergey V.,Myshkin Yuri V.,Adamovich Dmitri V.,Beliy Michael D.

Abstract

FSUE Radon deals with collection, transportation, treatment, conditioning, and interim storage and final disposal of conditioned low-and intermediate-level radioactive wastes (LILW) as well as radiation monitoring, decontamination and environmental remediation of Moscow and Moscow area. Liquid LILW with high salinity is subject to vitrification at the Radon full scale vitrification plant using a cold crucible inductive melting (CCIM) at temperatures of 1150-1200 °C. The bench-scale cold crucible based unit is used for research works and feasibility study on new promising ceramic and glass-ceramic waste forms based on incinerator slag and ash. Solid and liquid organic LILWs are treated in a plasma shaft furnace with liquid slagging at temperatures of 1400-1500 °C. Molten slag is solidified in containers yielding a glass-crystalline material with high chemical durability and strong mechanical integrity suitable for safe long-term storage and disposal in both interim repositories and underground sites. One of the promising methods for LILW treatment is application of thermochemical reactions – self-propagating high-temperature synthesis (SHS) with high energy release which is considered as a potential technology for treatment of spent ion-exchange resins, silts and grounds and some specific wastes.

Publisher

Trans Tech Publications Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3