Clay Structural Transformations during Firing

Author:

Blanchart Philippe1,Deniel Sarah2,Tessier-Doyen Nicolas2

Affiliation:

1. Laboratoire GEMH-ENSCI

2. ENSCI

Abstract

Silicate ceramics with clays are some of the most complicated ceramic systems because of the very complex relationship between the behavior of mineral materials during the ceramic processing and the transformations during heating. A major challenge is to predict the phase transformations in silicate ceramics, since complex relationship occur between the microstructural and structural characteristics of fired product and the physical properties. Clay minerals undergo strong structural transformations during heating, simultaneously to a complex path of thermal transformations. Individual reactions cannot simply identify since they are closely related and overlapped. At temperature above 800°C, new phases are recrystallized and many of the reactions are strongly topotactic. Mullite is the most important phase, which recrystallizes with a range of morphology and stoichiometry. Variables affecting the mullite formation include the clay mineral type and behavior during heating, the possible occurrence of liquid and impurities as Fe. It results in large variations of the stoichiometry and shape of mullite crystals, which are embedded in a low ordered phase to form a micro-composite microstructure. This presentation will review recent research, looking at structural transformations in some typically used phyllosilicate systems : (i) structural transformation of kaolinite and mica phases were identified at temperature up to 1100°C. They evidence a residual structural order of high temperature phases which is favorable to the topotactic recrystallization of mullite; (ii) from the high temperature form of phyllosilicates, an organized network of mullite can be obtained; (iii) the composition of a local and transient liquid and the presence of minor elements as Fe has a significant influence on the mullite morphology; (iv) mechanical properties are closely related to size and organization degree of the mullite network; (v) the process itself influence the kinetic of structural transformation and particularly the powder compact density and the thermal cycle. These research in silicate ceramics evidence multiple and complex challenges, providing opportunities for future development.

Publisher

Trans Tech Publications Ltd

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3