3-D Static and Time-Depending Modelling of DC and RF Thermal Plasmas for Industrial Applications

Author:

Colombo Vittorio1,Ghedini Emanuele1,Sanibondi Paolo2

Affiliation:

1. Università di Bologna

2. Univesità di Bologna

Abstract

Thermal plasma processes play nowadays a key role in many industrial applications, such as powder densification and spheroidization, synthesis of nano-powders, treatment of waste materials and spraying of thin coatings. Although many of these applications have been fully implemented industrially for many decades, modelling plays an important factor in their continued development and improvement. 3-D simulation of the behaviour of commercial inductively coupled (RF) plasma can be useful tool to predict the main features of plasma assisted treating and processing of injected raw materials. The effects of changing coil current frequency, the hydrogen mixing in argon primary gas and the flow patterns and temperature distributions have been investigated. 3-D time-dependent modelling DC non-transferred arc plasma torch for plasma spraying operating at atmospheric pressure can allow the prediction of particle trajectories and thermal history, the analysis of the influence of the plasma jet cold gas entrained eddies on particle behaviour and the mechanisms that can lead to a fluctuating and non homogeneous heating of the particle stream. All computations have been performed using a customized version of the CFD commercial code FLUENT©.

Publisher

Trans Tech Publications Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3