Integrated ZnO Film Based Acoustic Wave Microfluidics and Biosensors

Author:

Luo Jack K.1,Fu Y.Q.2,Ashley Greg1,Milne Williams I.3

Affiliation:

1. University of Bolton

2. Heriot Watt University

3. University of Cambridge

Abstract

Lab-on-a-chip (LOC) is one of the most important microsystems with promising applications in microanalysis, drug development and diagnosis, etc. We have been developing a LOC biodetection system using acoustic wave as a single actuation mechanism for both microfluidics and biosensing using low cost piezoelectric ZnO film. Surface acoustic waves (SAW) coupled into the liquid will induce acoustic streaming, or move the droplet on the surface. These have been utilized to make SAW-based micropumps and micromixers which are simple in structure, easy to fabricate, low cost, reliable and efficient. SAW devices and thin film bulk acoustic resonators (FBAR) have been fabricated on nanocrystalline ZnO thin films deposited using sputtering on Si substrates. A streaming velocity up to ~5cm/s within a microdroplet and a droplet moving speed of ~1cm/s have been achieved. SAW based droplet ejection and vaporization have also been realized. SAW devices and FBARs have been used to detect antibody/antigen and rabbit/goat immunoglobulin type G molecules, showing their high sensitivity. The results have demonstrated the feasibility of using a single actuation mechanism for the LOC.

Publisher

Trans Tech Publications Ltd

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3