Convective Heat Transfer Analysis of Hydromagnetic Micropolar Fluid Flow Past an Inclined Nonlinear Stretching Sheet with Variable Thermo-Physical Properties

Author:

Fatunmbi Ephesus Olusoji1,Okoya Samuel Segun2,Makinde Oluwole Daniel3

Affiliation:

1. Federal Polytechnic

2. Obafemi Awolowo University

3. Stellenbosch University

Abstract

The current work examines mixed convection boundary layer flow and heat transfer attributes in hydromagnetic micropolar fluid past a heated inclined sheet which stretches nonlinearly along the direction of flow. The impact of variable thermo-physical characteristics of the fluid together with the influence of magnetic field, thermal radiation and viscous dissipation are also checked on the flow field. The modelled governing equations are translated from partial to ordinary differential equations via relevant similarity transformations and the resulting equations are subsequently solved numerically by means of shooting techniques in company with Runge-Kutta integration algorithms. The reactions of the skin friction coefficient, Nusselt number, dimensionless velocity as well as temperature to variations in the emerging controlling parameters are illustrated through different graphs. In the limiting situations, the results obtained exhibit a strong relationship with the existing related works in literature. The facts emanated from this study also reveal that the thickness of the thermal boundary layer grows widely with a rise in the Eckert number and Biot number parameters whereas increasing the material (micropolar) and thermal conductivity parameters have opposite effects on the rate of heat transfer.

Publisher

Trans Tech Publications, Ltd.

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3