Affiliation:
1. Federal Polytechnic
2. Obafemi Awolowo University
3. Stellenbosch University
Abstract
The current work examines mixed convection boundary layer flow and heat transfer attributes in hydromagnetic micropolar fluid past a heated inclined sheet which stretches nonlinearly along the direction of flow. The impact of variable thermo-physical characteristics of the fluid together with the influence of magnetic field, thermal radiation and viscous dissipation are also checked on the flow field. The modelled governing equations are translated from partial to ordinary differential equations via relevant similarity transformations and the resulting equations are subsequently solved numerically by means of shooting techniques in company with Runge-Kutta integration algorithms. The reactions of the skin friction coefficient, Nusselt number, dimensionless velocity as well as temperature to variations in the emerging controlling parameters are illustrated through different graphs. In the limiting situations, the results obtained exhibit a strong relationship with the existing related works in literature. The facts emanated from this study also reveal that the thickness of the thermal boundary layer grows widely with a rise in the Eckert number and Biot number parameters whereas increasing the material (micropolar) and thermal conductivity parameters have opposite effects on the rate of heat transfer.
Publisher
Trans Tech Publications, Ltd.
Subject
General Chemical Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献