SAR Image Recognition Combined Bidirectional 2DPCA with PCA

Author:

Wang De Gong1,Yang Zuo Long1,Chang Shuo1

Affiliation:

1. Aviation University of Air Force

Abstract

The method of Principal Component Analysis (PCA) needs to convert image matrix to high-dimensional column vector used in feature extraction. The 2-dimensional PCA (2DPCA) offsets disadvantages of PCA. However, 2DPCA compresses image along the rows or columns only, the number of features is still large. In order to solve the above problems, bidirectional 2DPCA was used to compress image matrix along row and column meanwhile, then use PCA reduce the number of computations and feature dimensions. Three kinds of ground static military targets images acquired by SAR were used as the experimental data. The experimental result shows that, the method of SAR image recognition presented by this paper reduced the dimensions of feature matrix and raised the recognition rate.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Target Feature Extraction and Recognition of SAR Images Based on PCANet;Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019);2019-12-04

2. 2DPCA versus PCA for face recognition;Journal of Central South University;2015-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3