Microstructure and Mechanical Properties of 16Cr-2Ni Stainless Steel Fusion and Solid State Welds-Influence of Post Weld Treatments

Author:

Madhusudhan Reddy G.1,Rajasekhar Adula2

Affiliation:

1. Near Net Shape Group

2. Hyderabad Institute of Technology and Management

Abstract

Many critical applications in chemical equipment, aircraft and ordinance demand a material of construction with high strength and good corrosion resistance. Frequently the strength requirement exceeds that obtainable with austenitic or ferritic stainless steel and it is necessary to use one of the martensitic stainless steels. Since martensitic stainless steels are structural materials, weldability has been an important consideration in their development. AISI 431 is one of the most potentially attractive steels in this class used extensively for parts requiring a combination of high tensile strength, good toughness and corrosion resistance. Although this material has been used for many years, little information is available on the welding behavior of these steels. Further, data on electron beam (EB) welding and solid state welding process like friction welding are scarce. The lack of knowledge constitutes a potential drawback to the more widespread use of these steels. Hence, a study has been taken up to develop an understanding on the electron beam welding and friction welding aspects of martensitic stainless steel type AISI 431. Various kinds of post weld heat treatments (PWHT) were investigated to determine their influence on microstructure and mechanical properties. Weld center in EB welding resulted a cast structure consists of dendritic structure with ferrite network in a matrix of un-tempered martensite. In friction welding, the weld center exhibited thermo-mechanical effected structure consists of fine intragranular acicular martensite in equiaxed prior austenite grains. In both the welding processes, post weld tempering treatment resulted in coarsening of the martensite which increases with increase in tempering temperature. In the as-weld condition, welds exhibited high strength and hardness and poor impact toughness. Increase in impact toughness and decrease in strength and hardness is observed with an increase in tempering temperature. The hardness of EB welds increased with increase in the austenitizing temperature up to 1100 °C and a marginal decrease thereafter was observed. Double austenitization after double tempering resulted in optical mechanical properties i.e., strength, hardness and toughness.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference21 articles.

1. Brickner, K. G.: Metals Engineering Quarterly, May 1968, 8 (2), 1-29.

2. Pickerring, F. B.: International Metals Review No. 211, 1976, 227-268.

3. Castro, R and de Cadenet.J. J: Welding Metallurgy of Stainless and Heat Resisting Steels, 56- 57, (1974), Cambridge University Press, Cambridge, U. K.

4. Brownrigg, A., Proc. 16th Int. Conf. on Heat treatment 76, 86, The Metals Society, Stratford- upon- Avon, (1976).

5. Gooch, T. G.: Stainless steel world, June (2000), pp.48-59.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3