Biosynthesis of Silver Nanoparticles Using Plant Extract and its Anti-Plasmodial Property

Author:

Panneerselvam Chellasamy1,Murugan Kadarkarai1,Amerasan Duraisamy1

Affiliation:

1. Bharathiar University

Abstract

Metallic nanoparticles have received great attention from chemists, physicists, biologists and engineers who wish to use them for the development of a new generation of nanodevices. In the present Communication, a completely “green” chemistry method for producing silver nanoparticles is introduced. The process is simple, environmentally benign, and quite efficient. Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and ecofriendly reducing and capping agents. In particular, silver nanoparticles are proved to have potential antibacterial, antifungal and antiplasmodial and antimicrobial properties. The present study was aimed to identify the antiplasmodial activity of green synthesised silver nanoparticles (AgNPs) using aqueous extract of plantEuphorbia hirtaagainstP.falciparum. Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant to generate extremely stable silver nanoparticles in water. The bio-reduced silver nanoparticles were appropriately characterized by UV–vis spectrum, Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The formation of the AgNPs synthesized from the XRD spectrum compared with the standard confirmed spectrum of silver particles formed in the present experiments were in the form of nanocrystals, as evidenced by the peaks at 2θ values of =28.01°, 32.41°, 46.44°, 55.05° and 57.75°. The scanning electron micrograph (SEM) showed structures of spherical, cubic shape, and the size range was found to be 30–60 nm. The EDX spectra showed the purity of the material and the complete chemical composition of the synthesized AgNPs. The parasitic inhibition was dose-dependent. The synthesized AgNPs showed considerable antiplasmodial activity than the crude methanol and aqueous leaf extract ofE.hirta. The maximum efficacy was

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3