Affiliation:
1. Chung Yuan Christian University
2. National Tsing Hua University
3. Yuan Ze University
4. St. John’s University
Abstract
The various nitrogen gas (N2) flows for depositing zirconium-nitride (ZrN) films on the substrate of a p-type (100) silicon wafer are investigated through reactive magnetron sputtering by a pulsed-DC power. The results, based on the design of experimental (DOE) method, indicate that the deposition effect of the ZrNx film is obviously affected by various flow rates of nitrogen gas at the specific pulsing duty cycles. The crystal orientation of the zirconium-nitride film has a less order microstructure which is similar to an amorphous microstructure. Although the composition ratio of chemical elements is not identical in Zr and N, the surface roughness, grain size, and resistivity are the better feature. The deposition rate is inversely proportional to the nitrogen flow rate and the chamber pressure is also an important factor. The basic effect of N2 flow rate on the surface roughness is rougher when more nitrogen gas is supplied. The resistivity of ZrNx thin film has a positive relationship to N2 flow rates at the reactive vacuum chamber.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献