Fold Defects in Aluminum Alloy A356 Lost Foam Casting

Author:

Jagoo S.1,Ravindran Comondore1,Nolan Dennis2

Affiliation:

1. Ryerson University

2. Foseco Morval

Abstract

In the lost foam casting (LFC) of aluminum alloys, the expandable polystyrene (EPS) foam characteristics (foam composition, polymer processing and bead fusion) influence the formation of deleterious fold defects in the final casting. In this research, four types of EPS beads were investigated: (1) the regular EPS beads, (2) 2wt% hexabromocyclododecane and 2wt% dicumyl peroxide added to the EPS beads during the polymerization process, (3) 2wt% silicaalumina blended to EPS beads after the pre-expansion process of the beads and (4) 2wt% hexabromocyclododecane blended to EPS beads after the pre-expansion process of the beads. The density of the regular and modified EPS beads was kept constant at 25.63 kg/m3. Aluminum alloy A356 was poured at 1023 K into the window pattern. The window patterns with regular EPS beads did not fill completely and had identifiable carbon/oxide defects on the surface. The window patterns with the additives were completely filled with a few surface defects. From thermogravimetric analysis (TGA), it was found that the EPS beads with silica-alumina had a reduced onset temperature of degradation of EPS (from 634 K to 618 K) and a reduced activation energy (from 188 kJ/mol to 147 kJ/mol) relative to the regular beads. In the organic brominatedmodified EPS (both through blending and polymerization), it was found that the value of the preexponential (rate equation) was significantly increased. Through light optical microscopy (LOM) and scanning electron microscopy (SEM), it was found that the polymerization process additives increased the degree of bead fusion whereas the post pre-expansion additives decreased the degree of bead fusion. Finally, the EPS beads treated during the polymerization process produced castings with the least overall surface, subsurface and internal defects.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference6 articles.

1. H. F. Shroyer, U. S. Patent 2, 830, 343. (1958).

2. R. J. Donahue, U. S. Patent 5, 960, 851. (1999).

3. P. Gardner, R. S. Lehrle and D. Turner, Polymer degradation modified by blending with polymers chosen on the basis of their φ-factors, Journal of Analytical and Applied Pyrolysis Vol. 25 (1993), p.11.

4. M. H. Warner, B. A. Miller and H. E. Littleton, Pattern Pyrolysis Defect Reduction in Lost Foam Casting, AFS Transactions Vol. 106 (1998), p.777.

5. F. Sonnenberg and M. E. Hoover, Development of the Improved Casting Bead for Lost Foam, LFC Conference 2004, Paderborn, Germany, March 31-April 1 (2004).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3