Simulation Studies and Evolution of Mechanical Properties of AA6061 Subjected to RCS

Author:

Bhovi Prabhakar M.1,Naik Akash R.1,Adarsh Dattatraya1,Ranjitkumar C.G.2,Venkateswarlu K.3

Affiliation:

1. K.L.E Technological University

2. R.N.S. Institute of Technology

3. CSIR

Abstract

AA6061 alloy was selected as starting material, as this alloy play vital role in aerospace, automotive and naval applications. To enhance mechanical properties and study the structural correlation of AA6061 using one of the promising SPD (Severe Plastic Deformation) technique. In RCS (Repetitive Corrugation and Straightening), repetitive bending and shearing stresses act alternatively on the specimen. The die models and work piece were designed using Creo parametric 2.0 and imported to AFDEX-2014 (Adviser metal Forming Design Expert) for simulation studies. AA6061 was subjected to four passes (8 stages) of RCS. Effective strain observed in AA6061 alloy was 2.389 and strain rate increased during corrugation and less during straightening stages. The theoretical effective strain was 2.65.The experimental effective strain was validated and found to be nearly approximately 92% of the theoretical result. Further, mechanical properties like tensile strength and microhardness increased to 1.5 to 2 times in AA6061 alloy after eight passes of RCS. Keywords: AA6061, RCS, SPD, Microhardness, Tensile strength

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3