Your Bearing Fault Diagnosis Based on Bispectrum and Bispectrum Entropy Feature

Author:

Huang Jin Ying1,Pan Hong Xia1,Bi Shi Hua2

Affiliation:

1. North University of China

2. Beijing Institute of Technology

Abstract

Fault feature extraction and application is the key technology of fault diagnosis. In this paper, a fault diagnosis method using bispectrum and bispectrum entropy as the fault feature parameters is put forward. Bispectrum entropy as the information entropy in bispectrum domain can reflect the complexity of information energy. When the structure is failed, the distribution of bispectrum will be changed. bispectrum entropy can reflect this change and achieve good separation of the different types of fault. Vibration signal in different bearing states of a secondary drive gearbox is compared and analyzed, bispectrum energy spetrum and bispectrum entropy are extracted. Feature vector is set up via bispectrum entropy for the fault pattern recognition and diagnosis by BP neural network. The analysis result proves that bispectrum entropy is more sensitive to fault characteristic and can separate the fault of bearing.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference14 articles.

1. SAADAOUI Wajdi, JELASSI Khaled, Gearbox-Induction machine Bearing fault diagnosis using spectral analysis, Second UKSIM European Symposium on Computer Modeling and Simulation, pp.347-352, (2008).

2. Yang Jiangtian, Chen Jiaji, Zeng Ziping, Extracting Fault Features Using Higher Order Spectra for Rotating Machinery, Journal of Vibration Engineering, No. 1, pp.13-17, (2001).

3. LI Yang-huan,GAO Feng,LI Teng,ZHOU Zhi-min, Novel method for feature selection based on entropy. Computer Engineering and Applications, Computer Engineering and Applications, vol. 45, No. 15, pp.54-57, (2009).

4. Berthold Bein, Entropy, Best Practice & Research Clinical Anaesthesiology, vol. 20, No. 1, pp.101-109, (2006).

5. L.A. Overbey, M.D. Todd, Effects of noise on transfer entropy estimation for damage detection, Mechanical Systems and Signal Processing, vol. 23, p.2178–2191, (2009).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3