Modal Parameter Identification of 500kV SF6 Current Transformer Based on Natural Excitation Method

Author:

Zhang Qian1,Lu Zhi Cheng1,Sun Yu Han1,Zhong Min1

Affiliation:

1. China Electric Power Research Institute

Abstract

In this paper the feasibility of natural excitation method which uses cross-correlation function instead of impulse response function of the response to identify the modal parameter of 500kV SF6 current transformer was discussed .Four different algorithms were used to extract the modal parameter of 500kV SF6 current transformer with the measured cross-correlation function obtained by natural excitation method. The results of modal parameter identification using natural excitation method and experimental modal analysis were compared in the experimental way.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference10 articles.

1. Wang Ji etc, Application of MATLAB in vibration signal processing[M]. China Water Conservancy and Electricity Press, 2006(in Chinese).

2. Chang Hong. et al. Comparative Study of modal parameter identification methods on ambient excitation[J]. Journal of Changchun Institute of Technology(Natural Science Edition), 2009, 10(2): 10-2. (in Chinese).

3. Guillaume P, Hermans L, Van Der Auweraer H. Maximum likehood identification of modal parameters from operational data; processings of The Proceedings of the 17th international Modal Analysis Conference(IMAC17), F, 1999[C].

4. James III G H, Carne T G, Lauffer J P. The natural excitation technique(NExT) for modal parameter extraction from operating structures[J]. The International Journal of Analytical and Experimental Modal Analysis, 1995, 10(4): 260-77.

5. He X, Moaveni B, Conte J, et al. Comparative study of system identification techniques applied to New Carquinez Bridge; Proceedings of the Proc, Int 3rd Conf on Bridge Maintenance, Safety and Management(IABMAS 2006), F, 2006[C], IABMAS Porto, Portugal.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3