Optical Characteristics of Erbium-Doped SiO2/PVA Electrospun Nanofibers

Author:

Abd-Rahman M. Kamil1,Suhaimi N.F.M.1,Edwin Evy Evana1,Dian Winnie1,Abdul Halim Nur Hanis1

Affiliation:

1. Universititeknologi MARA

Abstract

This paper reports on the fabrication and optical characteristics of erbium-doped silica/PVA nanofibers via sol gel and electrospinning techniques. Silica glass, PVA (polyvinyl alcohol) and SiO2/PVA composites displayed 85% to 90% transparent across 300 2000 nm wavelength range. The transmission spectra were measured using Cary 5000 UV-Vis-NIR spectrophotometer. Silica was synthesized using TEOS (tetraethylorthosilicate) as the precursor, while PVA solution comprised of 7.0 wt% in H2O. The compositional ratios of SiO2:PVA were from 6:4 to 1:9 and were doped with 0.2% to 0.6% of erbium. Suitable viscosities of Er3+-doped SiO2:PVA solutions were electrospun into mesh of long strands nanofibers. Morphological and material compositions in the nanofibers were analysed using FESEM (field-emission scanning electron microscopy) and EDX (energy-dispersive X-ray spectroscopy). Er3+-doped SiO2:PVA thin films were coated on fused-silica glass substrates via spin coating and were characterized for their refractive indices, optical transmission, and fluorescence using M-line technique, UV-Vis-NIR spectrometer and photoluminescence spectrophotometer, respectively. Lower ratios of silica to PVA solutions results in higher viscosities and produced more uniform nanofiber structures of diameters around 100 nm with lesser beads. The refractive index of 1.61 for Er-doped SiO2:PVA (1:9) thin film was measured with TE polarized 632.8 nm wavelength laser and the index shows to be higher for more content of PVA in the glass/polymer composites. The 0.4% of Er3+ in SiO2:PVA composite produced the highest luminescence intensity at 605 nm when excited with 514 nm source. Higher doping content caused ion clustering effect and leads to concentration quenching, hence decreased in the emission intensity.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3