A Study on Parameters Affect Seismic Behavior of Reinforced Concrete Specially Shaped Columns

Author:

Yang Pu1,Tang Jing1

Affiliation:

1. Chongqing University

Abstract

Using flexibility-based finite element method based on fiber model, several experiments of reinforced concrete specially shaped columns under cyclic loading which cross section is ‘L’, ‘T’ and ‘+’ shape with different longitudinal reinforcement and hoop reinforcement have been simulated, and the seismic behavior of columns such as strength, ductility and energy dissipation are analyzed. Results from the analytical study indicate that: 1) ductility of the column increases as quantity of hoop reinforcement increases. 2) strength capacity of the column increase linearly as ratio of longitudinal reinforcement increase, but is not seriously affected by hoop reinforcement; 3) energy dissipation capacity of the column is not significantly affected by hoop and longitudinal reinforcement, particularly in slightly nonlinear range.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference11 articles.

1. Cao Wanlin, Wang Guangyuan and Ou JinPing. Earthquake Engineering and Engineering Vibration, Vol. 14(1994), p: 60-67 (In Chinese).

2. Cao Wanlin, Wang Guang-yuan and Wu Jian-You. Earthquake Engineering and Engineering Vibration, Vol. 14(1994), p: 67-72 (In Chinese).

3. Cao Wanlin, Wang Guang-yuan and Wu Jian-You. Earthquake Engineering and Engineering Vibration, Vol. 15(1995), p: 76-84 (In Chinese).

4. Li Jie, Wu Jianyin and Zhou Deyuan. Journal of Building Structures. Vol. 23(2002), p: 9-15 (In Chinese).

5. Bo Wu, Yu-yeXu. Fire Safety Journal, Vol. 44 (2009), p: 212–218.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Impact On Mechanical Properties of Different Geometric Shapes On recycled HDPE (rHDPE) Reinforcement in Concrete Structures;International Journal of Sustainable Construction Engineering and Technology;2021-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3