Surface Characterization of Biomimetic Hydroxyapatite-Silver Functionalized on Polydopamine Film

Author:

Saidin Syafiqah1,Hermawan Hendra1,Chevallier Pascale2,Mantovani Diego2

Affiliation:

1. Universiti Teknologi Malaysia

2. Laval University

Abstract

Hydroxyapatite (HA) is a well known bioactive material in the application of coated orthopaedic and dental implants. Recently, biomimetic technique has been explored to deposit a stable carbonated HA on a metal surface, mimicking the properties of natural bone. The aim of this study is to surface characterize the biomimetic hydroxyapatite (HA) and metallized silver (Ag) functionalized on a polydopamine film grafted titanium alloy (Ti6Al4V). The Ti6Al4V disks were grafted with the polydopamine film to provide catechol/quinone groups for chemical binding process. The grafted surfaces were metallized with Ag in silver nitrate solution. The metallized surfaces were then grafted with the second layer of polydopamine film and further biomineralized with HA in 1.5 simulated body fluid (SBF) solution for 3 and 7 days. The chemical compositions and chemical functionalities of those functionalized surfaces were characterized by XPS, FTIR and EDS. The morphologies of the surfaces were viewed under SEM. Finally, the wettability properties of the surfaces were investigated by water contact angle analysis. The XPS results showed that the polydopamine films were grafted on the Ti6Al4V surfaces. The polydopamine films became the chemical binding medium for functionalization of Ag and HA as the existence of both elements were clarified in XPS and EDS data. The appearance of HA functional groups (phosphate groups) were only noticed on FTIR spectrum when the biomimetic process was performed at 7 days. The formation of biomimetic HA has produced a hydrophilic surface with an appearance of hemispherical lath-like HA structure which is crucial for osseointegration and bone growth stability.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference22 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3