Elliptical Ultrasonic Assisted Grinding (EUAG) of Monocrystal Sapphire – Surface Formation Characteristics

Author:

Liang Zhi Qiang1,Wang Xi Bin1,Wu Yong Bo2,Zhao Wen Xiang1

Affiliation:

1. Beijing Institute of Technology

2. Akita Prefectural University

Abstract

This study investigates surface formation characteristics in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire. During EUAG process, the workpiece is imposed to ultrasonically vibrate in two directions, i.e., vertical and parallel to work-surface, by using an elliptical ultrasonic vibrator. In our previous work, the vibrator has been produced by bonding a piezoelectric ceramic device (PZT) on a metal elastic body. When two alternating current voltages with a phase difference are applied to the PZT at the same frequency that is close to the resonant frequency of the longitudinal and bending mode of the vibrator, two dimensional ultrasonic vibrations are generated simultaneously, resulting in an elliptical motion on the end face of the vibrator. In this paper, to clarify the work-surface formation characteristics in EUAG of sapphire material, grinding experiments are carried out involving sapphire substrate. In experiments, work-surface roughness is measured, and the ground work-surface morphology is examined by scanning electron microscope (SEM). The experimental results are summarized as: (1) Compared with conventional grinding (CG), the elliptical vibration leads to a decrease of surface roughness up to 25% in EUAG; (2) The surface roughness has a monotonously increasing trend with the increasing wheel depth of cut in both EUAG and CG, but has little variation with the worktable feed rate. As the wheel speed increases, the surface roughness decreases until it reaches a minimum, and then increases in a monotonous trend in both EUAG and CG; (3) The surface quality in EUAG has a significant improvement, and it is prone to achieve the ductile regime grinding of sapphire compared with CG. These indicate that the elliptical ultrasonic assisted grinding is an efficient technique for high performance machining of monocrystal sapphire.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3