Structural and Magnetic Properties of New Type CaxSr1-x-yLayO•nFe(2n-z)/nCoz/nO3 Magnets

Author:

Liu Xian Song1,Yang Ji Liang1,Yang Hui1

Affiliation:

1. Anhui University

Abstract

Considering that Ca2+ has the similar ion radius and the substituted ability as Sr2+ and Ba2+ but the same family, CaxSr1-x-yLayO•nFe(2n-z)/nCoz/nO3 ferrites have been synthesized by the conventional ceramic process. Structure and magnetic properties of CaxSr1-x-yLayO•nFe(2n-z)/nCoz/nO3 compounds have systematically been investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscope (SEM) and B-H hysteresis curve measurements. Several compositions are selected to investigate the formation of M phase with the joint replacement of Ca-La-Co. It is found that the formation mechanism is based on the replacement of Sr2+ by La3+ plus Ca2+ and the charge compensation by Co2+. In futher results, the unexpectedly intrinsic coercivity of 436 kA/m and residual flux density of 0.445 T were obtained. In terms of material preparation, we believe that CaxSr1-x-yLayO•nFe(2n-z)/nCoz/nO3 is effective in the production of future high energy permanent magnets.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3