Anelastic Behavior of Nanocrystalline Fe-Cr Alloy Obtained by Mechanical Alloying

Author:

Zhou Zheng Cun1,Du J.1,Yang H.1

Affiliation:

1. Suzhou Vocational University

Abstract

Anelastic behavior of nanocrystalline Fe-17 wt.%Cr alloy obtained by mechanical alloying was investigated using a multifunctional internal friction apparatus. Internal friction (Q-1) and relative dynamic modulus (f2) have been measured as a function of temperature by free-decay method from room temperature to 400oC for the ball-milled Fe-17 wt.%Cr alloy The specimens with different milling time were examined by XRD to determine the solid solubility of Fe and Cr atoms and detect the lattice strain of the compacted specimen before and after annealing. TEM observation was employed to obtain further information about the morphology and microstructure, especially crystalline size, of the milled Fe and Cr mixture powders. It has been suggested that the anelastic behavior of ball-milled nanocrystalline Fe-17 wt.%Cr alloy origins from the viscoelastic sliding at the interfaces resulting from the thermally-activating process. The damping increasing of the specimen with smaller grain sizes is larger than that of the specimen with larger grain sizes with increasing temperature since the former contains more interfaces. The increase in the relative dynamic modulus is attributed to the structural reordering with the lowering of lattice micro-strain that is produced during milling when temperature is over 300oC.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3