RETRACTED: Fabrication and Characterization of Nanospinel ZnCr2O4 Using Thermal Treatement Method

Author:

Gene Salahudeen A.1,Saion Elias B.1,Shaari Abdul Halim1,Kamarudeen Mazliana A.1,Al-Hada Naif Mohammed1ORCID

Affiliation:

1. University Putra Malaysia

Abstract

RETRACTED PAPER: The fabrication of nanospinel zinc chromite (ZnCr2O4) crystals by the means of thermal treatment method from an aqueous solution containing metal nitrates, polyvinyl pyrrolidone (PVP), and deionized water was described in this study. The samples were calcined at various temperatures ranging from 773 to 973 K for the decomposition of the organic compounds and crystallization of the nanocrystals. PVP was used as capping agent to control the agglomeration of the particles. The characterization studies of the fabricated samples were carried out by X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), energy dispersed X-ray spectroscopy (EDX) and electron spin resonance spectroscopy (ESR). The corresponding peaks of Zn, Cr and O were observed in the EDX spectrum of the sample which confirms the formation of ZnCr2O4. The XRD patterns also confirmed the formation of the single faced nanocrystallines of spinel ZnCr2O4 with a face-centered cubic structure. The average particle size of the synthesized crystals was also determined from the XRD patterns using the Scherers formula which shows that the crystallite sizes increases with increase in calcination temperature and was in good agreement with the TEM images which shows cubical ZnCr2O4 nanocrystals with uniform morphology and particle size distributions. The ESR spectra confirmed the existence of unpaired electron in the fabricated samples and the increase in g-factor and decreases in resonant magnetic field (Hr) were observed as the calcination temperature increases.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3