Effect of Length and Cross-Sectional Area on Ni3Fe Alloy Plasticity

Author:

Starostenkov Mikhail D.1,Aish Mohamed Mahmud1

Affiliation:

1. I.I. Polzunov Altai State Technical University

Abstract

Molecular Dynamics (MD) simulations have been carried out on ultrathin Ni3Fe alloy with face-centered cubic (FCC) lattice upon application of uniaxial tension at nanolevel with a speed of 20 m/s. the deformation corresponds to the direction <001>. To the calculated block of crystal - free boundary conditions are applied in the directions <100>, <010>. Morse potential was employed to carry out three dimensional molecular dynamics simulations. A computer experiment is performed at a temperature corresponding to 300 K. MD simulation used to investigate the effect of long of ultrathin Ni3Fe alloy on the nature of deformation and fracture. The engineering stress–time diagrams obtained by the MD simulations of the tensile specimens of these ultrathin Ni3Fe alloy show a rapid increase in stress up to a maximum followed by a gradual drop to zero when the specimen fails by ductile fracture. The feature of deformation energy can be divided into four regions: quasi-elastic, plastic, flow and failure. The yield strength decreased with increasing long of alloy, but increases with increasing the cross sectional area. Plasticity disappear when the length of the allays is too large. The results showed that breaking position depended on the alloy length.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3