On the Generated Heat at Advancing/Receding of Water on Surface Engineered Nanoporous Silica

Author:

Suciu Claudio Valentin1,Kimura Yuta1,Tani Shingo1

Affiliation:

1. Fukuoka Institute of Technology

Abstract

In this work, ratio of the generated heat relative to the dissipated energy, during the cyclical advancing/receding of water on surface engineered nanoporous silica is evaluated based on a thermographical method. Proposed test rig is a compression-decompression cylinder divided into two chambers, one of constant volume and the other of variable volume. Silica particles are introduced inside the cavity of fixed volume, and a micro-filter is used to separate it by the chamber of variable volume, in which only water is supplied. Using an infrared-camera, the temperature distribution on the external surface of the cylinder is recorded versus the working time, and positions of the main heat sources are identified. Such tests allow evaluation of the dissipated energy and generated heat. One finds that the surface engineered nanoporous silica is able to dissipate large amounts of mechanical energy without significant heating, i.e., maximum 17 % of the dissipated energy is emitted in the infrared frequency range. Such result is surprising since the emissions recorded from traditional frictional dissipaters, such as hydro-pneumatic absorbers, rubber and foam absorbers, etc., are mainly (about 90%) in the infrared range, and only partially in the audio and visible frequency range.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanical Energy Absorption of Metal–Organic Frameworks;Mechanical Behaviour of Metal – Organic Framework Materials;2023-03-24

2. Nanostructured Porous Silicon Containers as Drug Carriers;Pharmaceutical Chemistry Journal;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3