Design and Simulation of a Mechanism for Human Leg Motion Assistance

Author:

Geonea Ionuț Daniel1,Margine Alexandru1,Dumitru Nicolae1,Copiluși Cristian

Affiliation:

1. University of Craiova

Abstract

Legs are the mostimportant elements for accomplishing human physical work includingtransportation or displacement. In this paper, a new mechanism for human legmotion assistance has been proposed for rehabilitation purposes. The structureof human leg and its motions have been used as inspiration for design purposes.For a simple control algorithm, the proposed mechanism for the legs mustgenerate an ovoid path of the foot, by uniform rotating of actuating crank. Themechanism must generate an approximately linear trajectory of foot duringpropulsion. The resulting linkage is a single degree-of-freedom (DOF)mechanism, which exemplifies the shape and movement of a human leg. Theactuator of the mechanism is located in the upper portion of the linkagesimilar to it in a human leg. The mechanism is simulated and tested to verifythe proposed synthesis. A 3D model of the proposed system has been elaboratedin Solid Works®, booth for design and simulation purposes. Simulation resultsshow that the proposed mechanism performs movements similar to those of a humanleg. Maple and Adams software packages are used to simulate and validate the usabilityof the mechanism. The proposed mechanism demonstrates that a one DOF closedloop mechanical linkage can be designed to the shape and movement of the bipedhuman walking apparatus. The proposed mechanism is suitable for the fabricationof legged robots. Proportions of the linkage are estimated utilizinganthropometric measures of the human leg.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference12 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Performance Analysis of Ankle Joint Exoskeleton;Mechanisms and Machine Science;2023

2. Atlas Generation of Leg Mechanisms for Walking Platforms Using Creative Synthesis;Lecture Notes in Mechanical Engineering;2023

3. Design Approaches of an Exoskeleton for Human Neuromotor Rehabilitation;Applied Sciences;2022-04-13

4. A Reconfigurable Leg Exoskeleton for Human Locomotion Rehabilitation;2018 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO);2018-05

5. A leg exoskeleton command unit for human walking rehabilitation;2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR);2018-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3