Room Temperature Synthesis of Magnetite Particles by an Oil Membrane Layer-Assisted Reverse Co-Precipitation Approach

Author:

Santoso Uripto Trisno1,Abdullah 1,Mujiyanti Dwi Rasy1,Ariyani Dahlena1,Waskito Joyo1

Affiliation:

1. Lambung Mangkurat University

Abstract

Reverse co-precipitation (RCP) in ambient atmosphere is one of the strategies to produce magnetite nanoparticles in a rapid, simple, and cost-effective synthesis route without applying temperature surfactants or inert gases. However, RCP of ferrous/ferric blended salt in sodium hydroxide (NaOH) solution in an oxidizing medium produced of maghemite as a dominant phase rather than magnetite because of the oxidation of Fe2+ to Fe3+ happened. Based on this background, an oil membrane layer-assisted reverse co-precipitation approach has been examined to synthesis of magnetite in ambient atmosphere at room temperature. The result showed that although addition of benzene as an oil membrane layer was effective to prevent oxidation of magnetite to maghemite, but the magnetite particle size for the samples from the oil membrane layer-assisted reverse co-precipitation method was much larger than that from a reverse co-precipitation method without addition of oil membrane layer.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3