Abstract
Tool path generation is an important part of ultra-precision manufacturing, and spiral tool path is one typical driving path. For single point diamond turning (SPDT), two methods are commonly used to generate the driving points on the spiral tool path, which are equally spaced angles and equally spaced arcs for two adjacent cutting points. But these two methods both have the defects for machining radial sinusoidal surface with SPDT. In this paper, the theoretical analyses of the two different methods are conducted and compared respectively. Then, an optimal method of generating the spiral cutting tool path is proposed on the base of theoretical analyses, which can avoid disadvantages of two original methods. The proposed method can enhance the machining accuracy and fabricating efficiency for ultra-precision machining of the radial sinusoidal surface with SPDT.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献