Abstract
In this paper, an original method is presented for evaluating the probability of failure in a precise manner in the tube hydroforming process (THP). This process consists to apply an inner pressure combined to an axial displacement to manufacture the part. During the manufacturing phase, inappropriate choice of the load paths can lead to failure. Our approach is to determine the space failure probability for each item in the area is critical. It is defined by identifying the critical element, and then a patch is defined on this item that represents the area of the most probable failure. The identification of the critical element for each failure mode is done by reference the state of strain on the forming limit curve (FLC) of the material. Access to the probability of space failure allows to give an idea on the stability of the process and also to predict the most likely area where plastic instability can appear. The failure probability estimation based on a characterization probabilistic principal strains (major and minor) for each failure mode and for each element. Access to this probability of failure in a direct manner is impossible given the complexity of the treated problem and the huge number of calculations by finite elements necessary. To compensate for this problem, approximation techniques have been used to replace the real model by metamodel that enables to evaluate the response quickly and allows us to get an idea on the stability of the process.Keywords: Hydroforming process, metamodels, random, forming limit curve (FLC), failure mode, finite element.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bibliography;Material Forming Processes;2016-09-16