Bayesian Spam Filter Based on Distributed Architecture

Author:

Ye Liang1,Liang Ying Hong1,Liu Peng2

Affiliation:

1. Suzhou Vocational University

2. PLA University of Science and Technology

Abstract

The flood of spam promotes the development of anti-spam technology. In this paper, we bring forward the Bayesian filter technology based on the distributed architecture, which can realize the sharing of the Bayesian learning outcomes among servers within the system, so as to increase the accuracy of spam recognition. We, in the paper, discuss the sharing model of information with spam features under the distributed architecture and the spam identification process; analyze the Bayes algorithm and carry out the relevant improvements; design the Bayes Filter based on distributed architecture on the above basis and verify the effect of the filter by experiments.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference7 articles.

1. Spam Attacks and Spam Categories, http: /www. brightmail. com/spamstats. html.

2. Plice, Robert K., Melville, Nigel P.: Toward an information-compatible anti-spam strategy, Communications of the ACM, v 52, n 5, pp.128-130, May 1, (2009).

3. Lu Xinjie, Chai Qiaolin, Ma, Li: Research and implementation of distributed spam detection System based on multi-agent system, Jisuanji Gongcheng/Computer Engineering, v 31, n 18, pp.124-126, Sep 20 (2008).

4. Liu Peng, Chen Guangliang, Ye Liang, Zhong Weimin: A spam filtering system based on dynamically organized grid, WSEAS Transactions on Computers, v 4, n 10, pp.1270-1277, October (2005).

5. Jorgensen Zach, Inge Meador: A multiple instance learning strategy for combating good word attacks on spam filters, Journal of Machine Learning Research, v 9, pp.1115-1146, June (2008).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3