Abstract
Characterization of electrical parameters of Copper Phthalocyanine dye has been done in the present work. In the context of electrical parameters, the Schottky barrier and ideality factor of the organic device has been measured and the effects of fullerene nanoparticles on these parameters have been studied. Analysis of electrical parameters has been done by the current-voltage characteristics of the device. The influence of fullerene nanoparticles lessens the Schottky barrier to 0.71 eV from 0.75 eV. The current flow is assumed to be injection limited as the Schottky barrier is greater than 0.3 eV - 0.4 eV. The Schottky barrier is also estimated by the Norde method. Norde's method shows lessening of barrier height from 0.70 eV to 0.65 eV under the influence of fullerene nanoparticles. The measured ideality factor value reduces from 3.787 to 1.495 in presence of fullerene nanoparticles. The charge injection mechanism at metal-organic contact gets influenced by the interfacial Schottky barrier height. Decrease in both Schottky barrier and ideality factor attribute to the increase in charge flow and it allows a reduction in the device’s transition voltage from 2.5 V to 1.0 V.
Publisher
Trans Tech Publications, Ltd.